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Abstract

This paper describes theUIcluster software tool, which partitions expressed sequence tag (EST) sequences and other
genetic sequences into “clusters” based on sequence similarity. Ideally, each cluster will contain sequences that all represent
the same gene.UIcluster has been developed over the course of 4 years to solve this problem efficiently and accurately
for large data sets consisting of tens or hundreds of thousands of EST sequences. The latest version of the application has
been parallelized using the MPI standard. Both the computation and memory requirements of the program can be distributed
among multiple (possibly distributed) UNIX processes. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Partitioning of partial mRNA transcripts into
non-redundant sets, or gene indices, is commonly
referred to as clustering. In the high throughput gene
sequencing activities of our laboratories, we generate
large numbers of short mRNA transcript sequences—
expressed sequence tags (ESTs)—and partition them
into sets based on similarity. The importance of this
problem bears on several aspects, but the principal
of these are creating non-redundant indices of genes
and assessing the novelty of sequencing. If done in
a näıve fashion, such as anN × N comparison, this
problem would be intractable for the data set sizes
we produce (50K–300K ESTs). Although there are
several existing software system [1,5–7] available that
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perform sequence clustering accurately, our program
is unique in its ability to efficiently and accurately
cluster EST sequences. Over the past 4 years, we have
developed techniques to speedup the computation by
using increasingly sophisticated heuristics along with
parallel processing techniques. The usefulness of our
program, UIcluster, has been demonstrated in
conjunction with our gene discovery projects in iden-
tifying more than 100,000 novel clusters across three
species (human, mouse, and rat).

2. Expressed sequence tags

From a biological perspective, ESTs are partial
transcripts of genes. Specifically, they are sequenced
from cDNA (complementary DNA) clones, typically
synthesized from polyA-selected RNA. To prepare
for EST sequencing, mRNA molecules are extracted
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from cells and converted into cDNA through reverse
transcription. The cDNAs are then cloned into a
vector and electroporated into bacteria for growth,
amplification, and storage. A collection of such
cDNAs is referred to as a library. Each cDNA library
potentially contains many unique and previously
undiscovered genes. However, significant redundancy
within a library (multiple copies of the same mRNA)
and between libraries is normal.

High throughput EST sequencing for gene discov-
ery involves sequencing the 3′ end of randomly cho-
sen cDNA clones from a cDNA library. The use of a
poly-T primer during reverse transcription allows for
the preferential creation of cDNAs with a poly-A tail
at their 3′ ends. Thus, sequencing can start from a
known position (within poly-A tail).

For the purpose of this paper, and from the com-
putational perspective, an EST is a character string
made up of letters from the alphabet A, C, T, G, X,
N, where A, C, T, and G represent the four nucleotide
bases of DNA and X and N the bases that have been
masked (i.e., due to low-complexity or similarity to
known repetitive sequences) or that are of indeter-
minate identity. ESTs are typically several hundred
letters, or bases, long. Comparing pairs of ESTs and
looking for similarity is the basic element of sequence
clustering. This comparison is complex because the
underlying sequencing technology is error prone—
bases can be inserted, deleted, or misread. Studies of
our EST sequences have indicated that the error rate
for EST sequencing is approximately 2–3% for mis-
read errors, and 0.1–1% for insertion/deletion errors.

3. Uses of clustering

Clustering is used to assess the gene discovery rate
of sequencing done from cDNA libraries. For novel
assessment of individual libraries, the entire set of
ESTs obtained from that library is used as an input to
clustering. Clustering partitions the set into subsets,
or clusters, based on sequence similarity. Each EST
is a member of at most one cluster. Novelty is com-
puted as the number of clusters identified divided by
the number of sequences in the clustering.

This computation is used to calculate both instanta-
neous and overall novelty rates for individual cDNA
libraries and for EST projects as a whole. Incremental

novelty calculations are performed frequently to mon-
itor the sequencing efforts and to determine when
cDNA library subtractions should occur [2]. This
procedure can dramatically increase novelty rates.
However, the subtraction process is time consuming
and cannot be performed on a continual basis.

Fig. 1 shows an example of the effectiveness of these
procedures for a progression of four successive cDNA
libraries, named C0, C1, C2p, and C3. Each sharp
increase in novelty rates corresponds to the creation
of the next subtracted library.

Another significant use of clustering is the genera-
tion of non-redundant gene indices, or UniGene sets
[7]. As mentioned previously, ideally each cluster will
uniquely represent a gene. Thus, the goal in construct-
ing a UniGene set is to bring together all of the ESTs
sequenced from a given gene into a single cluster. This
information is useful for reducing redundant process-
ing and for the annotation of EST sequences.

4. Program evolution

UIcluster has evolved as our laboratory’s pro-
cessing requirements have increased. Three genera-
tions of the clustering program have been developed
to date. The first revision was developed to work well
for moderately sized data sets of ESTs. As our data
sets grew, this version required more than 24 h to clus-
ter the entire set of ESTs. The primary goal of the
second version of the program was improved perfor-
mance for large data sets. A third, parallelized version
provided higher performance and several additional
features has recently been released. All revisions of
UIcluster may be freely obtained from our project
web site (http://genome.uiowa.edu).

The basic clustering program flow proceeds as fol-
lows: (1) read one sequence from the input file, (2)
compare the sequence against every existing cluster,
(3) based on sequence similarity, either add it to an ex-
isting cluster or make it the first member of a new clus-
ter. This process is repeated until every sequence in the
input file is examined. In step 3, the EST is only added
to an existing cluster if the specified similarity criteria
is met. The similarity criteria is run-time configurable
and is of the formN out of M bases. For example,
38 out of 40 bases would mean two sequences are
judged to be similar if the sequences being evaluated

http://genome.uiowa.edu
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contain regions of 40 bases in which at least 38 of
the bases match. This comparison allows for insertion,
deletion, and mismatch errors. The speed of the pro-
gram is directly effected by these parameters. Higher
error tolerance(M − N) increases program execution
time significantly as does larger window sizes (M).

4.1. Revision 1.0

Revision 1.0 was useful for relatively small data
sets (<30,000 ESTs). The program was structured so
that clusters were stored in a 2D linked list. Each EST
read from the input file was compared against a single
representative element from each cluster. The longest
EST from each cluster was used as a representative
element for that cluster.

Evaluating theN of theM similarity criteria for two
sequences is computationally intensive. Therefore, as
a performance optimization, a hashing technique was
used to avoid comparisons that cannot satisfy theN
of the M criteria. A hash is simply an integer that
uniquely represents a short string of characters. The
general equation used to generate a hash is given as
follows:

H =
ζ−1∑
i=0

(Kiφi). (1)

In this equation,H is the generated hash value,ζ the
string length,K the alphabet size, andφi the integer
value assigned to the letter at positioni in the string
being hashed. The string lengthζ that can be used
to generate hashes is limited by the word size of the
computer. For the DNA alphabet, each base requires
2 bits to represent it (�log2 K�, whereK = 4 for DNA).
Thus, the maximum value ofζ using a single word on
a 32 bit system is 16.

When a sequence is hashed, Eq. (1) is used on every
ζ length sub-string. Fig. 2 shows the first six hashes
generated for a sample sequence withζ = 8.

When an EST is clustered, theN of theM similarity
criteria is only evaluated for cluster representatives
that contain one or more hashes in common with the
EST being clustered. The length of the hash probe
used is an important parameter that can significantly
affect performance. Longer hash lengths will result
in better performance for a given similarity criteria.
It must also be chosen carefully so that potential

Fig. 2. Example of hashing a sequence.

similarities are not missed. The formula for calculat-
ing the maximum hash size is shown in (2). The ra-
tional underlying this equation is that for any chosen
similarity criteriaN of theM, there is at least one con-
tiguous, error-free region ofζ bases. Thus, the com-
parison of two sequences can be accelerated by first
searching for short exact matches of lengthζ bases
between the pair (i.e. searching for identical hashes).
If such a match is found, a more exhaustive search
that permits errors can be performed. If no lengthζ

hashes are identified, then the two sequences cannot
possibly contain a window ofM bases withN bases in
common:

ζ =
⌊

M

M − N + 1

⌋
. (2)

The calculation to generate the hashes for a sequence
is only performed once since the hash lists are stored
in memory. However, the hashes are accessed many
times during the programs execution. This amor-
tizes the computational overhead of generating the
hashes.

4.2. Revision 2.0

The main improvement in this revision was the im-
plementation of the global hash table (GHT). As our
EST data sets grew larger, the sequential nature of
the traversal of the cluster representative linked list
for every input sequence became a bottleneck. The
GHT optimizes the program at a higher level than in-
dividual sequence comparisons by filtering the entire
search space of cluster representatives into a subset of
high-potential candidate targets.

When a new sequence is clustered, a list of hashes
is generated for eachζ base window of its sequence.
Each hash in the list is then used as an index into the
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Fig. 3. GHT.

GHT. Fig. 3 shows a GHT with 48 elements, corre-
sponding toζ = 8. Each element in the table points to
a linked list of clusters that contain at least one occur-
rence of the hash equal to its index. In Fig. 3, there are
three clusters that contain the hash 2. If the sequence
being clustered also has a hash of two, the touch count
field of each cluster linked from the second element
in the GHT is incremented. If the touch count field
of a cluster exceeds a run-time configurable thresh-
old, a detailed sequence comparison is performed
between the input sequence and the candidate clus-
ter. This procedure is based on the premise that two
similar sequences will likely have many hashes in
common.

Care must be taken to adjust the touch count thresh-
old appropriately. For a given similarity criteria (e.g.
38 out of 40 bases) and hash lengthζ , if the thresh-
old is too low the speedup due to the GHT will be
small. Conversely, if the threshold is too high, some
sequence similarities will be missed.

This revision demonstrated 28× speedup on an in-
put data set of 80,766 rat EST sequences while calcu-
lating virtually identical results. The major trade-off
of the GHT optimization is memory utilization. How-
ever, on a system with 2 GB of RAM we have been
able to cluster data sets as large as 1 million ESTs.
While theoretically the first revision could handle data

sets this long, the computation time required would
make it impractical.

4.3. Revision 3.0

The most recent version of the clustering program
has been parallelized to divide the computational and
memory requirements across several computers (com-
pute nodes). The parallelization added performance
and enabled computation of larger problem sizes. The
MPI (message passing interface) [4] communication
standard has been used for inter-process communi-
cation.

In this mode of execution, each cluster is stored on
exactly one compute node. A given sequence is read
in from the input file and processed in parallel on each
compute node. This results in a parallel search of the
cluster space. After each node has finished its search,
it collectively communicates the local best match to
all compute nodes. Only the node with the best match
stores the sequence in its memory space. If no match is
found on any of the compute nodes, the input sequence
becomes a new cluster and is assigned to one of the
compute nodes in a round-robin assignment.

This implementation uses a collective communica-
tion at the end of every sequence clustered, therefore,
the amount of computation required for each sequence
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is important. As the grain size increases, better per-
formance should be observed because relatively less
communication is being performed.

Performance scales poorly for default parameters
and one sequence per job, actually decreasing when
using two compute nodes. This is due to the compu-
tation being unevenly distributed and the additional
communication overhead. With more compute nodes,
performance increases somewhat but is never greater
than double that of the serial case. The larger grain
size when incoming sequences are searched against all
clusters (instead of stopping after the first identified
match) results in significantly improved speedup.

5. Current research

Our current research onUIcluster focuses pri-
marily on transcript-centered methods—unifying the
information present from every constituent of a clus-
ter to provide a more comprehensive representation of
the entire gene. The major change this encompasses is
the definition of a “virtual primary” that represents all
of the unique subsequences. The impact of this is to
enable more comprehensive storage of transcript in-
formation, including alternative splicing information.
This in turn allows unification of ESTs derived from
alternatively spliced mRNAs that might otherwise not
have overlapped.

6. Conclusion

The evolution of an EST clustering program has
been discussed. Background information on the prob-
lem has been presented along with details of two
sequential implementations and a parallel implemen-
tation. Planned extensions toUIcluster include
utilizing the recently released human genome se-
quence [3,8], and others applicable to the organism
under study (e.g., mouse, rat) to improve the accuracy
of clustering, and to aid in identification of alternative
splice forms and intron/exon boundaries. Other exten-
sions planned include improved performance for long
sequences (e.g., full length cDNA sequences), auto-
mated and semi-automated cluster merging and merge
candidate identification, and tools for manual curation
of clustering results by expert human operators.
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